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ABSTRACT

In order to achieve optimum design of composite structures and bonded
composite joints a full understanding of the fundamental non-linear mechanical
behaviour of composite materials and the adhesive systems is required. The
time-dependent behaviour of the adhesive systems is reasonably well
documented, and has to some degree been accounted for in the design of
bonded joints. However this is not the case for matrix materials in carbon
fibre/epoxy resin systems. Whilst it is known that matrix-dominated behaviour
of composites is highly non-linear, even at room temperature, this is often
neglected in the design procedure.

This report presents a study on the non-linear behaviour of a composite
material and focuses on the shear behaviour of the carbon fibre/epoxy resin
system used in the F/A-18, viz., AS4/3501-6.
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Time-dependent Response of Carbon Fibre/Epoxy
Composites

EXECUTIVE SUMMARY

In order to achieve the best possible design of composite structures and bonded
composite joints it is important that the behaviour of the composite and the
adhesive is fully understood. This report contains experimental results for the
composite carbon fibre/epoxy resin system used extensively in the F/A-18
aircraft. These results enable a better understanding of the complex behaviour
of these composites and will be used in finite element analysis of composite
structures and composite bonded joints to enable greater accuracy in predicting
the stresses and strains in the composite.
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1. Introduction

The increasing use of composite materials in load bearing structures requires an
understanding of the fundamental mechanical behaviour of composite materials (eg.
AS4/3501 AS4 carbon fibre system and 3501 thermoset matrix). Whilst it is known that
the matrix materials in carbon fibre/epoxy are often time-dependent, even at room
temperature, this non-linear behaviour is often neglected in design procedures.

The matrix materials found in most composite materials are epoxy based. Recent
studies by Chiu et al, (1994a) showed that FM73, a rubber toughened epoxy, is
strongly non-linear in time at room temperature. In particular, during strain holds,
significant stress relaxation occurs. This phenomena can be interpreted as a
degradation mechanism in the epoxy as it represents a irreversible dissipation of
elastic energy. The behaviour of this epoxy under elevated temperature was
subsequently reported by Chiu et al, (1994b). At elevated temperatures, time-
dependencies of the epoxy were reported to be even more significant. Since the
majority of composite materials are made using epoxy resins, it is therefore important
that behaviour of the matrix in the confinement of the carbon fibre be characterised.

Fibre reinforced plastics like AS4/3501 can be found in various components of modern
civilian and military aircraft (eg. F/A 18 in the Royal Australian Air Force). Structures
made from this composite material are essentially designed such that the fibres are
oriented in the principal directions of the load. However, the loads in aircraft
structures are often complex with combinations of unidirectional and shear loading.
Under these circumstances, the matrix material will now act to transfer and carry this
shear loading. Similarly, changes in the "joint" geometry can result in matrix
dominated interlaminar shearing forces. This has been recognised to be one of the
causes of the disbonding of the structural reinforcement of the F111C wing pivot
fitting (Molent et al, 1992 and Molent, 1988).

It is therefore important to understand the non-linear effects of composite materials
and structures if optimal design of any structure is to be undertaken. This paper
presents one such study into the non-linear behaviour of a composite material,
AS4/3501-6. Particular attention is focussed on the shear behaviour of the epoxy used
as matrix material. This paper will report on;

- The effects of strain rate on the stress/strain behaviour.

- The effects of cyclic loading at various strain rates.

- Strain holds to demonstrate the stress relaxation phenomena.
- Creep experiments performed with load hold experiments.

Similar experiments were also reported by Gates, (1991) where the rate dependent
behaviour of advanced composites was studied. However, Gates used a different fibre
matrix system (Hercules IM7 fibre and Amoco 8320 matrix, a thermoplastic material).
Significant rate dependent behaviour of this matrix material was reported.




DSTO-TR-0248

2. Test Specimens and Procedures

The geometry of the test specimen is shown in Figure 1 and is nominally 200 mm long
by 50 mm wide and 6.5 mm thick. The specimen test section is 115 mm long by 50 mm
wide. This specimen was manufactured from a large panel made from AS4/3501
carbon fibre/epoxy. The layup of the panel is [(+ 45);5];. As reported by Chiu et al,
(1994a), it is essential that the testing of the mechanical behaviour of the epoxy be
performed under local strain control. Repeatable results can only be obtained using
this testing procedure. As a result, strain gauges located in the centre of the test
coupon provided the local strain values and, more importantly, the signal to the strain
controller of the Instron testing machine in order to achieve strain rate control. An
Instron servo-hydraulic test machine is used for this test program.

0 mm

!
AA :
I
. i
£ i
8 i
A t
' Straln
i 'gauges
E v
I A IR LS
: e
& i
!
I
|
i
]
1
i
Y !

48 ply laminate [(£45)12]sym
Figure 1: Geometry of test specimen.

The tests were performed at room temperature (25-19°C) and at a variety of strain
rates, ranging from a slow 0.00001 /sec to the machine maximum of 0.152 /sec. These
tests consisted of loading the specimen to a nominal shear strain of 17,000 pe and then
applying a triangular cyclic loading of approximately 10,000 + 7,000 pe for a number of
cycles. During the stress relaxation tests, the strain was held at a pre-determined
value. Table 1 indicates the test condition for each specimen tested.
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During the load hold (creep) tests, specimens were loaded at a constant load rate of
1.1kN/sec and load holds were applied at load levels where non-linearity was
observed in the monotonic tests described above. Table 2 indicates the test condition
for each specimen tested.

Table 1: List of specimen numbers with the corresponding test condition for the strain

control tests.
Spec no. | Straln rate Test type Spec no. | Straln rate Test type
(/sec) (/sec)
B-24 0.00001 | 0.01+0.007 - 15 cycles B-22 0.152 0.01£0.007 - 15
cycles

B-15 0.00017 | 0.011£0.007 - 1cycle B-01t4 0.000108 | Stress relax - strain
hold at 0.02

B-18 0.00014 0.01£0.007 - 15 cycles B-05 0.135 Stress relax - strain
hold at 0.029

B-17 0.0188 0.01+0.007 - 15 cycles

Table 2: List of specimen numbers with the corresponding test condition for the load

control tests.
Spec no. Load rate Test type
(kN/sec)
B-11 1.1 (0.00013) Creep - load hold at 60 MPa
B-12 1.1 (0.00017)" Creep - load hold at 70 MPa

+ Approximate strain rate ( /sec)

The load and strain values obtained from the Instron test machine were acquired by
either a Macintosh II, the ISGAR IBM compatible and the AMLAB data acquisition
systems. The load was converted to shear stress (1), using

t=P/Qwt

¢))
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where P is the applied load, w is the specimen width and t is the specimen thickness.
The shear strain (y) was obtained from the strain gauge rosette located on the test
specimen, i.e.

v=(a-€)/2 @

where g and & are the direct strains measured in the longitudinal and transverse
directions, respectively, as illustrated in Figure 1.

For the testing machine to run in strain control, the strain gauges were wired-up in a
Wheatstone half bridge arrangement such that the output voltage from the bridge was
essentially (g; - &). This voltage was then the input into the testing machine and used
as the feedback signal for the strain control tests. In order to calibrate this voltage, i.e.
to determine the exact relation between this voltage and the shear strain on the
specimen two calibration runs were require. The first was to load the specimen to 5
kN, in load control, measuring load, & and &. The second run was in strain control
measuring the variation of load with the half bridge voltage (designated here as V).
These runs produced plots of (a) shear strain versus load and (b) Vi, versus load,
respectively. Typical plots are given in Figure 2. This then allowed the determination
of the relation between Vi, and measured shear strain, as shown in Appendix A.

;

Shear strain (uc)
;
b

*
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Figure 2: Typical calibration plots for the half bridge signal. (a) shear
strain (Y) versus load (P) and (b) half bridge voltage (Vis) versus
load (P) (specimen B-22).

3. Results and Discussions

Figure 3 shows a typical plot of shear strain against time during a test. Repeatability
of test results is illustrated in Figure 4, where two specimens were loaded at nominally
similar strain rates, viz. B-18 and B-15 at strain rates of 0.00014 and 0.00017 /sec,
respectively.  This figure shows the excellent repeatability achieved when the
specimens are tested under local (shear) strain control.
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Figure 3: Typical variation of shear strain with time during cyclic load
tests under strain control (specimen B-24).
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Figure4:  Shear stress | shear strain behaviour of carbon fibre / epoxy resin

system AS4/3501-6 for two test specimens at similar strain rates.
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The stress / strain behaviour of the carbon fibre/epoxy at various strain rates is
shown in Figure 5. These curves demonstrate the dependencies of the stress / strain
behaviour of the composite material on strain rates, where at high shear strain levels,
the value of shear stress in the material may vary by up to 20% depending on the
strain rate applied. For a general structure, in the vicinity where local geometry
changes occur, the local strain field changes rapidly. This can also be interpreted as a
region of highly variant strain rates. Therefore, material in this location can follow a
different stress / strain curve depending on its strain rate. This phenomena was
studied numerically by Jones et al, (1993) where it was shown that under these
circumstances, analysis of the structure using traditional single stress / strain curve
can result in gross errors in the estimation of the stress / strain values. A more
accurate assessment of the structure can only be attained when the time-dependency
of the material is incorporated in the analysis.
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Figure5:  Shear stress | shear strain behaviour of carbon fibre | epoxy resin

system AS4/3501-6 at various strain rates.

The cyclic load results for specimens B-24, B-18, B-17 and B22 are shown in Figure 6.
Figure 6(a) shows that the hysteresis curve, for a shear strain rate of 0.00001 /sec has
saturated at about the 5th cycle. Specimens loaded at higher rates require a greater
number of cycles to reach saturation. Typically for the higher rates, greater than
0.00014 /sec, about 10 cycles are required before saturation is achieved.
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Figure 6: Shear stress / shear strain behaviour of carbon fibre / epoxy resin
system AS4/3501-6 under cyclic loading at various strain rates.
(a) 0.00001 /sec (B-24), (b) 0.00014 /sec (B-18), (c) 0.0188 /sec (B-17)
and (d) 0.152 /sec (B-22).
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Stress relaxation behaviour of carbon fibre / epoxy resin system
AS4/3501-6 at various strain rates.
(a) 0.000108 /sec (B-01t4) and (b) 0.135 /sec (B-05).
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The results from the stress relaxation experiments are shown in Figures 7(a) and (b).
The temporal stress decay during these experiments are shown in Figures 8(a) and (b).
As discussed by Chiu et al (1994), during strain holds, the stress decays to an
asymptotic limit. In this case, this limit is approximately 60 MPa. It can be seen that
during a strain hold, depending on the initial loading rate, a stress decay of up to 30%
can be obtained. Figure 8(b) shows that this 30% drop in shear stress (or load) was
attained in less than 5 secs. This demonstrates the highly non-linear behaviour of the
matrix material of this particular carbon fibre/epoxy. This stress drop can be
interpreted as a degradation of the matrix material as it represents a conversion of
elastic energy to irrecoverable energy as the total strain is held at a constant value.

Figures 9(a) and (b) show the creep characteristics of the matrix materials. These
figures show that even at room temperature, the matrix exhibits significant time-
dependent behaviour. It is expected that the creep rate is dependent on the load at
which the test specimen is held at, viz; the higher the load, the higher the creep rate.
Creep is of course a reflection of the degradation of the material. The load being held
constant (ie. elastic strain is constant) implies that the temporal development of strain
contributes directly to the increase in inelastic strain. This may be interpreted as an
accumulation of damage in the matrix material.

4, Conclusion

As a result of these experimental findings, the non-linear time-dependent mechanical
behaviour of carbon fibre/epoxy has been clearly documented. The rate-dependent
stress/strain behaviour of the material is reflected in its rapid rate of stress decay
during strain hold (in some cases, 30% in less than 5 sec) and significant creep
characteristics. Therefore, this behaviour may have to be taken into account if an
accurate assessment of a composite structure is required.

13
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The table below lists the calibration constants for the specimens reported here.
The constants are given by the following equations,

Vb=a1+az P,

Y=as+a P,

Y=b1+ b2 Viyand

Vi =bs+ bg ¥.

Al
A2
A3
A4

Table A.1: Calibration constants relating shear strain to half bridge voltage.

Spec. a, a, a, é, b, b, b, b,
No.
x10-6

22 0.00936 0.07517 10.083 136.8 -6.95 1819.9 549
24 0.01137 0.0955 -18.58 169.1 -38.64 1770.7 565
15 -0.00773 0.06665 -27.35 123.9 -41.7 1859.0 538
18 0.00271 0.0686 10.27 121.4 5.47 1769.7 565
17 -0.00345 | 0.06672 -1.974 124.7 -1.97 1869.0 535
11 0.00481 0.06489 12.58 116.4 3.95 1793.8 557
12 0.01119 0.06607 25.12 126.5 3.7 1915 522

15
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